Fork me on GitHub

MapReduce基础学习-二

Hadoop序列化

序列化概述

image
image

自定义bean对象实现序列化接口(Writable)

在企业开发中往往常用的基本序列化类型不能满足所有需求,比如在Hadoop框架内部传递一个bean对象,那么该对象就需要实现序列化接口。
具体实现bean对象序列化步骤如下7步。

  1. 必须实现Writable接口
  2. 反序列化时,需要反射调用空参构造函数,所以必须有空参构造
1
2
3
public FlowBean() {
super();
}
  1. 重写序列化方法
1
2
3
4
5
6
@Override
public void write(DataOutput out) throws IOException {
out.writeLong(upFlow);
out.writeLong(downFlow);
out.writeLong(sumFlow);
}
  1. 重写反序列化方法
1
2
3
4
5
6
@Override
public void readFields(DataInput in) throws IOException {
upFlow = in.readLong();
downFlow = in.readLong();
sumFlow = in.readLong();
}
  1. 注意反序列化的顺序和序列化的顺序完全一致
  2. 要想把结果显示在文件中,需要重写toString(),可用”\t”分开,方便后续用。
  3. 如果需要将自定义的bean放在key中传输,则还需要实现Comparable接口,因为MapReduce框中的Shuffle过程要求对key必须能排序。
1
2
3
4
5
@Override
public int compareTo(FlowBean o) {
// 倒序排列,从大到小
return this.sumFlow > o.getSumFlow() ? -1 : 1;
}

序列化案例实操

需求

统计每一个手机号耗费的总上行流量、下行流量、总流量

  1. 输入数据(phone_data.txt)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
1	13736230513	192.196.100.1	www.atguigu.com	2481	24681	200
2 13846544121 192.196.100.2 264 0 200
3 13956435636 192.196.100.3 132 1512 200
4 13966251146 192.168.100.1 240 0 404
5 18271575951 192.168.100.2 www.atguigu.com 1527 2106 200
6 84188413 192.168.100.3 www.atguigu.com 4116 1432 200
7 13590439668 192.168.100.4 1116 954 200
8 15910133277 192.168.100.5 www.hao123.com 3156 2936 200
9 13729199489 192.168.100.6 240 0 200
10 13630577991 192.168.100.7 www.shouhu.com 6960 690 200
11 15043685818 192.168.100.8 www.baidu.com 3659 3538 200
12 15959002129 192.168.100.9 www.atguigu.com 1938 180 500
13 13560439638 192.168.100.10 918 4938 200
14 13470253144 192.168.100.11 180 180 200
15 13682846555 192.168.100.12 www.qq.com 1938 2910 200
16 13992314666 192.168.100.13 www.gaga.com 3008 3720 200
17 13509468723 192.168.100.14 www.qinghua.com 7335 110349 404
18 18390173782 192.168.100.15 www.sogou.com 9531 2412 200
19 13975057813 192.168.100.16 www.baidu.com 11058 48243 200
20 13768778790 192.168.100.17 120 120 200
21 13568436656 192.168.100.18 www.alibaba.com 2481 24681 200
22 13568436656 192.168.100.19 1116 954 200
  1. 输入数据格式
1
2
7 	13560436666	120.196.100.99		1116		 954			200
id 手机号码 网络ip 上行流量 下行流量 网络状态码
  1. 期望输出数据格式
1
2
13560436666 		1116		      954 			2070
手机号码 上行流量 下行流量 总流量
需求分析

image

编写MapReduce程序
  1. 编写流量统计的Bean对象
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
package com.atyp.mr.flowsum;

import org.apache.hadoop.io.Writable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

public class FlowBean implements Writable {
//上行流量
private long upFlow;
//下行流量
private long downFlow;
//总流量
private long sumFlow;

/**
* 空参构造,为了后续反射用
*/
public FlowBean() {
}

public FlowBean(long upFlow, long downFlow) {
this.upFlow = upFlow;
this.downFlow = downFlow;
this.sumFlow = upFlow + downFlow;
}

/**
* 序列化方法
*
* @param dataOutput
* @throws IOException
*/
@Override
public void write(DataOutput dataOutput) throws IOException {
dataOutput.writeLong(upFlow);
dataOutput.writeLong(downFlow);
dataOutput.writeLong(sumFlow);
}

/**
* 反序列化方法
*
* @param dataInput
* @throws IOException
*/
@Override
public void readFields(DataInput dataInput) throws IOException {
//必须要求和序列化方法顺序一致
upFlow = dataInput.readLong();
downFlow = dataInput.readLong();
sumFlow = dataInput.readLong();
}

@Override
public String toString() {
return upFlow + "\t" + downFlow + "\t" + sumFlow;
}

public long getUpFlow() {
return upFlow;
}

public void setUpFlow(long upFlow) {
this.upFlow = upFlow;
}

public long getDownFlow() {
return downFlow;
}

public void setDownFlow(long downFlow) {
this.downFlow = downFlow;
}

public long getSumFlow() {
return sumFlow;
}

public void setSumFlow(long sumFlow) {
this.sumFlow = sumFlow;
}
}
  1. 编写Mapper类
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
package com.atyp.mr.flowsum;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

public class FlowCountMapper extends Mapper<LongWritable, Text, Text, FlowBean> {
Text k = new Text();
FlowBean v = new FlowBean();

@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//22 13568436656 192.168.100.19 1116 954 200

// 1.获取一行
String line = value.toString();

// 2.切割 \t
String[] fields = line.split("\t");

// 3.封装对象
k.set(fields[1]); //封装手机

long upFlow = Long.parseLong(fields[fields.length - 3]);
long downFlow = Long.parseLong(fields[fields.length - 2]);
v.setUpFlow(upFlow);
v.setDownFlow(downFlow);
//v.set(upFlow, downFlow);

// 4.写出
context.write(k, v);
}
}
  1. 编写Reducer类
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
package com.atyp.mr.flowsum;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

public class FlowCountReducer extends Reducer<Text, FlowBean, Text, FlowBean> {
FlowBean v = new FlowBean();
@Override
protected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException {
//13568436656 192.168.100.18 2481 24681
//13568436656 192.168.100.19 1116 954

long sum_upFlow = 0;
long sum_downFlow = 0;
// 1.累加求和
for (FlowBean value : values) {
sum_upFlow += value.getUpFlow();
sum_downFlow += value.getDownFlow();
}

v.set(sum_upFlow, sum_downFlow);

// 2.写出
context.write(key, v);
}
}
  1. 编写Driver驱动类
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
package com.atyp.mr.flowsum;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

public class FlowSumDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
args = new String[]{"D:\\WorkSpace\\IdeaWorpace\\hadoop_input_output\\input_02","D:\\WorkSpace\\IdeaWorpace\\hadoop_input_output\\output_02"};
Configuration conf = new Configuration();
// 1.获取Job对象
Job job = Job.getInstance(conf);

// 2.设置jar的路径
job.setJarByClass(FlowSumDriver.class);

// 3.关联Mapper和Reducer
job.setMapperClass(FlowCountMapper.class);
job.setReducerClass(FlowCountReducer.class);

// 4.设置mapper输出的key和value类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(FlowBean.class);

// 5.设置最终输出的key和value类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FlowBean.class);

// 6.设置输入输出路径
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

// 7.提交Job
boolean result = job.waitForCompletion(true);

System.exit(result ? 0 : 1);
}
}